238 research outputs found

    Chaotic temperature dependence in a model of spin glasses

    Full text link
    We address the problem of chaotic temperature dependence in disordered glassy systems at equilibrium by following states of a random-energy random-entropy model in temperature; of particular interest are the crossings of the free-energies of these states. We find that this model exhibits strong, weak or no temperature chaos depending on the value of an exponent. This allows us to write a general criterion for temperature chaos in disordered systems, predicting the presence of temperature chaos in the Sherrington-Kirkpatrick and Edwards-Anderson spin glass models, albeit when the number of spins is large enough. The absence of chaos for smaller systems may justify why it is difficult to observe chaos with current simulations. We also illustrate our findings by studying temperature chaos in the naive mean field equations for the Edwards-Anderson spin glass.Comment: 10 pages, 5 figures; To be published in European Physics Journal

    Community detection thresholds and the weak Ramanujan property

    Get PDF
    Decelle et al.\cite{Decelle11} conjectured the existence of a sharp threshold for community detection in sparse random graphs drawn from the stochastic block model. Mossel et al.\cite{Mossel12} established the negative part of the conjecture, proving impossibility of meaningful detection below the threshold. However the positive part of the conjecture remained elusive so far. Here we solve the positive part of the conjecture. We introduce a modified adjacency matrix BB that counts self-avoiding paths of a given length \ell between pairs of nodes and prove that for logarithmic \ell, the leading eigenvectors of this modified matrix provide non-trivial detection, thereby settling the conjecture. A key step in the proof consists in establishing a {\em weak Ramanujan property} of matrix BB. Namely, the spectrum of BB consists in two leading eigenvalues ρ(B)\rho(B), λ2\lambda_2 and n2n-2 eigenvalues of a lower order O(nϵρ(B))O(n^{\epsilon}\sqrt{\rho(B)}) for all ϵ>0\epsilon>0, ρ(B)\rho(B) denoting BB's spectral radius. dd-regular graphs are Ramanujan when their second eigenvalue verifies λ2d1|\lambda|\le 2 \sqrt{d-1}. Random dd-regular graphs have a second largest eigenvalue λ\lambda of 2d1+o(1)2\sqrt{d-1}+o(1) (see Friedman\cite{friedman08}), thus being {\em almost} Ramanujan. Erd\H{o}s-R\'enyi graphs with average degree dd at least logarithmic (d=Ω(logn)d=\Omega(\log n)) have a second eigenvalue of O(d)O(\sqrt{d}) (see Feige and Ofek\cite{Feige05}), a slightly weaker version of the Ramanujan property. However this spectrum separation property fails for sparse (d=O(1)d=O(1)) Erd\H{o}s-R\'enyi graphs. Our result thus shows that by constructing matrix BB through neighborhood expansion, we regularize the original adjacency matrix to eventually recover a weak form of the Ramanujan property

    The secondary structure of RNA under tension

    Full text link
    We study the force-induced unfolding of random disordered RNA or single-stranded DNA polymers. The system undergoes a second order phase transition from a collapsed globular phase at low forces to an extensive necklace phase with a macroscopic end-to-end distance at high forces. At low temperatures, the sequence inhomogeneities modify the critical behaviour. We provide numerical evidence for the universality of the critical exponents which, by extrapolation of the scaling laws to zero force, contain useful information on the ground state (f=0) properties. This provides a good method for quantitative studies of scaling exponents characterizing the collapsed globule. In order to get rid of the blurring effect of thermal fluctuations we restrict ourselves to the groundstate at fixed external force. We analyze the statistics of rearrangements, in particular below the critical force, and point out its implications for force-extension experiments on single molecules.Comment: to be published in Europhys. J.

    Large-scale low-energy excitations in 3-d spin glasses

    Full text link
    We numerically extract large-scale excitations above the ground state in the 3-dimensional Edwards-Anderson spin glass with Gaussian couplings. We find that associated energies are O(1), in agreement with the mean field picture. Of further interest are the position-space properties of these excitations. First, our study of their topological properties show that the majority of the large-scale excitations are sponge-like. Second, when probing their geometrical properties, we find that the excitations coarsen when the system size is increased. We conclude that either finite size effects are very large even when the spin overlap q is close to zero, or the mean field picture of homogeneous excitations has to be modified.Comment: 11 pages, typos corrected, added reference

    Energy exponents and corrections to scaling in Ising spin glasses

    Full text link
    We study the probability distribution P(E) of the ground state energy E in various Ising spin glasses. In most models, P(E) seems to become Gaussian with a variance growing as the system's volume V. Exceptions include the Sherrington-Kirkpatrick model (where the variance grows more slowly, perhaps as the square root of the volume), and mean field diluted spin glasses having +/-J couplings. We also find that the corrections to the extensive part of the disorder averaged energy grow as a power of the system size; for finite dimensional lattices, this exponent is equal, within numerical precision, to the domain-wall exponent theta_DW. We also show how a systematic expansion of theta_DW in powers of exp(-d) can be obtained for Migdal-Kadanoff lattices. Some physical arguments are given to rationalize our findings.Comment: 12 pages, RevTex, 9 figure

    Constraint optimization and landscapes

    Full text link
    We describe an effective landscape introduced in [1] for the analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring. This geometric construction reexpresses these problems in the more familiar terms of optimization in rugged energy landscapes. In particular, it allows one to understand the puzzling fact that unsophisticated programs are successful well beyond what was considered to be the `hard' transition, and suggests an algorithm defining a new, higher, easy-hard frontier.Comment: Contribution to STATPHYS2

    Inference in particle tracking experiments by passing messages between images

    Full text link
    Methods to extract information from the tracking of mobile objects/particles have broad interest in biological and physical sciences. Techniques based on simple criteria of proximity in time-consecutive snapshots are useful to identify the trajectories of the particles. However, they become problematic as the motility and/or the density of the particles increases due to uncertainties on the trajectories that particles followed during the images' acquisition time. Here, we report an efficient method for learning parameters of the dynamics of the particles from their positions in time-consecutive images. Our algorithm belongs to the class of message-passing algorithms, known in computer science, information theory and statistical physics as Belief Propagation (BP). The algorithm is distributed, thus allowing parallel implementation suitable for computations on multiple machines without significant inter-machine overhead. We test our method on the model example of particle tracking in turbulent flows, which is particularly challenging due to the strong transport that those flows produce. Our numerical experiments show that the BP algorithm compares in quality with exact Markov Chain Monte-Carlo algorithms, yet BP is far superior in speed. We also suggest and analyze a random-distance model that provides theoretical justification for BP accuracy. Methods developed here systematically formulate the problem of particle tracking and provide fast and reliable tools for its extensive range of applications.Comment: 18 pages, 9 figure

    Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes

    Get PDF
    We study the approximate message-passing decoder for sparse superposition coding on the additive white Gaussian noise channel and extend our preliminary work [1]. We use heuristic statistical-physics-based tools such as the cavity and the replica methods for the statistical analysis of the scheme. While superposition codes asymptotically reach the Shannon capacity, we show that our iterative decoder is limited by a phase transition similar to the one that happens in Low Density Parity check codes. We consider two solutions to this problem, that both allow to reach the Shannon capacity: i) a power allocation strategy and ii) the use of spatial coupling, a novelty for these codes that appears to be promising. We present in particular simulations suggesting that spatial coupling is more robust and allows for better reconstruction at finite code lengths. Finally, we show empirically that the use of a fast Hadamard-based operator allows for an efficient reconstruction, both in terms of computational time and memory, and the ability to deal with very large messages.Comment: 40 pages, 18 figure

    Computing a Knot Invariant as a Constraint Satisfaction Problem

    Full text link
    We point out the connection between mathematical knot theory and spin glass/search problem. In particular, we present a statistical mechanical formulation of the problem of computing a knot invariant; p-colorability problem, which provides an algorithm to find the solution. The method also allows one to get some deeper insight into the structural complexity of knots, which is expected to be related with the landscape structure of constraint satisfaction problem.Comment: 6 pages, 3 figures, submitted to short note in Journal of Physical Society of Japa

    Jamming versus Glass Transitions

    Full text link
    Recent ideas based on the properties of assemblies of frictionless particles in mechanical equilibrium provide a perspective of amorphous systems different from that offered by the traditional approach originating in liquid theory. The relation, if any, between these two points of view, and the relevance of the former to the glass phase, has been difficult to ascertain. In this paper we introduce a model for which both theories apply strictly: it exhibits on the one hand an ideal glass transition and on the other `jamming' features (fragility, soft modes) virtually identical to that of real systems. This allows us to disentangle the different contents and domains of applicability of the two physical phenomena.Comment: 4 pages, 6 figures Modified content, new figur
    corecore